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ABSTRACT

i.- A detailed analysis of the deformation and stress fields produced

in an elastic/perfectly plastic half-space by a rigid conical indenter

was performed using the elastic/plastic finite element code BOPACE-3D.

The analysis considers: the elastic deformation and stress fields

with finite element results being compared to the closed-form solutions

obtained by Sneddon, the elastic/plastic deformation and stress fields,

and the residual deformation and stress fields which have not been

analyzed to date. A special loading technique was developed to find

the residual solutions.

The included angle of the rigid conical indenter was set to

- 3641to simulate a Vickers pyramidal indenter. Idealized soda-

line glass was chosen as an elastic/perfectly plastic brittle material.

Stresses obtained during the loading-unloading cycle near the

elastic/plastic boundary were transformed to the principal stresses and

the residual principal stresses to allow analysis of median, radial

and lateral crack initiation and propagation.
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CHAPTER I

INTRODUCTION

1.1 Generai Introduction

Elastic contact problems and elastic indentation problems

involving the normal application of a load against an elastic half-

space by a rigid body have been of considerable interest in various

fields of applied mechanics. The point indentation problem was

solved in closed-form by Boussinesq [1] and Michell [2]. The closed-

form solution for spherical indentation was developed by Hertz [3]

and Huber [4]. The conical indentation problem was solved in closed-

form by Sneddon [5,6].

As the theory of plasticity has advanced, elastic/plastic

contact-indentation problems have been approached analytically [7,8,9],

experimentally [10,11] and numerically [12,13,14,15]. To the author's

knowledge, the problem of normal loading of an elastic/perfectly

plastic half-space by a rigid conical indenter has not been analyzed,

despite the fact that aspects of this problem are of great interest

in many fields, including indentation fracture mechanics. An analytical

solution to this problem would be extremely difficult to develop but

the use of the high-speed computer combined with the proper finite

element code have made its solution possible. In this investigation a

finite element code which incorporates the pure tangential stiffness

incremental method was applied to obtain a solution to the problem of

elastic/plastic conical indentation.

6.

.................................
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1.2 Purpose of the Investigation

The purpose of this investigation was to perform fundamental

research on elastic/plastic conical indentation problems associated

with the machining of brittle materials. It is anticipated that the

design, fabrication .and maintenance capabilities for brittle structures

can be improved when the basic understanding of fundamental failure

mechanisms associated with resultant generated elastic/plastic stress

fields and residual stress fields is increased. The resultant

axisynmetric elastic/plastic stress fields associated with both

loading and unloading can then be related to median, radial and

lateral cracking. In order to obtain this solution, it was necessary

to apply axisymmetric elastic/plastic analysis and cyclic loading

in the finite element program.

1.3 Scope of the Investigation

This investigation consists of four primary sections. The first

section considers the development of a finite element model for the

conical indentation problem and the verification of the model by

comparing numerically generated results with the closed-form results

for an elastic half-space derived by the well-known Sneddon solution.

Secondly, an elastic/plastic conical indentation analysis is performed

using the finite element model with plastic analysis capability to

generate the elastic/plastic stress and strain fields and to determine

the extent of plastic deformation near the indentation site. Thirdly,

a loading-unloading cycle is simulated in order to obtain the residual

S



stress fields associated with elastic/plastic indentation. Finally,

the results in terms of generated stress fields are related to the

initiation and propagation of median, radial and lateral cracks

beneath the indenter.

,. o4
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CHAPTER II

ELASTIC/PLASTIC FINITE ELE4ENT METHOD

2.1 General Concepts

This section discusses the general concepts utilized in the

solution of elastic/plastic problems by finite element techniques.

This approach is based on a plastic stress-strain matrix derived

from the Prandtl-Reuss equations, and on incremental or iterative

stiffness methods.

2.1.1 Stress-Strain Equations

It has been well established that the plastic constitutive

equation can be expressed in incremental form. In this investigation,

the selected incremental plasticity relations conform to the Prandtl-

Reuss flow rule, which is the usual flow rule associated with the

well-known Huber-Mises yield surface criterion [7,16,17]. The

Prandtl-Reuss flow rule uses the strain increment deij, which is

related to the stress increment doi4. The incremental stress-

strain relations with the differential form of the Iluber-Mises

yield surface criterion can be represented in matrix form as:

{do} - [DP]{dc} , (I)

where {do} and {de} are defined as the -:olumn matrices of

do and delj, respectively; and (Dp ] is the plastic stress-strain

matrix. Equation (1) can be expressed as:



a5

6 ao.
do Z - dc. (i = 1,2,3,4,5,6), (2)

"-" j=l ae J

where the coefficients 3o./D. are the partial stiffness components
:1 J

[28]. Hooke's law for isotropic elastic materials can be expressed in

matrix form as:

{o} = [De]{,} , (3)

where the elastic stress-strain matrix [De ] is given as:

i-V V V 0 0 0
1-2 l-2v l-2v

v 1-v V
1-2v 1-2v 1-2v 0 0 0

v v 1-v
l-2v 1-2v 1-2v 0 0 0

[De , 2G
o o A ~(4)1

0 0 0 0 0

o o o2

o o 0 0 0 2

For the elastic/plastic finite element method, the plastic stress-

strain matrix [Dp] for yielded elements takes the place of the elastic

stress-strain matrix [Del.

The Prandtl-Reuss stress-strain relations for the deviatoric

strain increment de' during continued loading are:
ij

S.dc' a' dX + (5)
ij ij 2G

6-.



A 6

where

dX 3d(TE 3 da(6
2- 2-

a aH'

a 2 j ~j~3 (7)

=j. dep. dJY.J (8)

and

H' d
TE P (fd )

The Huber-Mises yield criterion and its differential form are:

aj 2j .;2, (10)

and

ajj daj .a 4-2 H'dA (1

From equations (5) and (11),

2G~ d' ajdI a H'dX

Therefore,
a' dF-'j cy' d

ciA j ~ 1 i(12)
S S

0 where

S CY(1 +(13)

From equations (6) and (12),
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de dc..k
, kd k: (4doi S 2GdE = 2Gdci - ij.- .(1 4 ")

The total stress increment do is:

Sdo do' + E dEii

= 2G de i + 1-2v 6iideii ij (15)

Equation (15) can be represented in matrix form as:

(d l = [DPI (dcl , (16)

where

[DP ] 2G-

i-v -__ _-Z
1-2v S 1-2v S

SYM.,-'O a' a't a'Sm
V xx yy V yy zz

1-2v S 1-2v S

V a- at - a Ti a 2
x zz _ _zz 1- zz

12--2v S S l-2v S

a t  at at T1 T2
_ _ -  zz X 1

.. xy S yz S S

a t''; a t O
1  

T T T 2" ''a'rr2
xx __Y T  zz _ j yz Y
- -yz S zx ST yz S 2 s

a' a' y' T T 2
T - T zz xv zx vz zx 1 zx

S zx S zx S zx S S 2 S

(17):4
It is obvious that equation (16) is similar in form to equation (3) and

that the necessary modifcation from elastic to elastic/plastic behavior

a
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would be to replace [De] by [Dp] for yielded elements as successive

yielding takes place. This procedure was developed by Marcal and

King [18] and Yamada, Yoshimara and Sakurai [19,201.

2.1.2 Incremental Stiffness Method

In this investigation, the incremental pure tangential stiffness

method was applied to construct the stiffness matrix. In this section,

this incremental stiffness method is discussed. For elastic finite

element analyses, the relationship between the nodal force and nodal

displacement in each element n can be expressed in matrix form by:

( = [ke] {q} ' (18)

where

[ke  = ff [B]T[De [B]dV (19)

and

.E} = [B] {q}n ' (20)
n .n

{Q}n = equivalent nodal force matrix,
n

{q} = equivalent nodal displacement matrix,

[B] = displacement-strain matrix.

Integration of equation (19) is over the volume of the element. The

* matrix [ke] is called the stiffness matrix for the elastic elements.

Similarly, for the plastic elements the stiffness matrix is expressed

as:

T[kp] = Al [B] [DP] [B] dV , (21)

i,
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and

{dQ}n [kP]{dq} " (22)n L n

The overall stiffness matrix [ki, which is an assemblage of the stiffness

U matrices [keI and [k], relates the nodal load increment (dQ} to the

nodal displacement increment {dq} as:

{dQ} = [k] {dq} . (23)

In order to solve the incremental equation (22) for an elastic-

plastic problem, the load-deflection relation is first expressed by:

{Q}n [k]{qn
nn

=IV (B]T [D] (B] dV {qn

T
(B] {cT}dV (24)

*i  Using variational techniques,

T
{dQ} = f [B]  (da} dV

n V

V= (V [B T [DT] {de}dV

= V [B]T [DT] [B] dV {dq}

= [kT ] {dq} , (25)

where [DT] and [T] are called the material tangential modulus matrix,

"- and the structural tangent stiffness matrix, respectively. It is
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obvious that

[De] = [D
T

[ke, [k]

for the elastic element and

[Dp] [DT],

[kp] - [kT]

for the plastic element.

The matrix [Dp] is updated for each increment of load with

computation of the plastic strain increment {dc p} at the yielded

elements. The tangent stiffness matrix [k] is computed at the end

of each increment and used for each succeeding increment according

to the following equations:

{Q} = {QoI + E (dQ.I , (26)
10 j=l

i

{q {q} + E {dq.} , (27)
j =l

and

[ki_] (dqi} = {dQi} , (28)

after the ith increment where {Qo} and (qo} are the initial loads

and displacements, usually null vectors. The above procedure is

called the "incremental tangent stiffness method."

L' .



2.1.3 Other Stiffness Methods

For elastic/plastic finite element analyses, there are three

major stiffness methods in addition to the incremental stiffness

method, the iterative method, the initial strain method and the initial

stress method. The iterative method [21,22] is used for elastic/plastic

behavior when the deformation theory of plasticity is employed. Suppose

the nonlinear nodal force and nodal displacement relation is expressed

as:

{Q~n [k(qQ)]{q} n (29)

where the force {Q} is entirely known and the displacement {qJn is
nn

entirely unknown. Such an iterative procedure involves an initial guess

for the displacement {q} (). An increasingly accurate series t

vectors

q(i) {q}(2) {q}(N) (30)[q} n ' q n . . . . {}n(0

is then generated with the objective being convergence to the exact

vector {q} The first iteration is obtained from:

[k({q1 (o) {Q {q}(l) = {Q} , (31)
nn n n

which has a formal solution:

(i) (k()i (Q}n (32){qn n

The general procedure is to solve the equation:

6. [k({q}(i-l), {Qn {q}(i) = {Q} (33)

n
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In 6rder to find the current step, the displacements from the pre-

ceding step are used.

The major problems arising from the use of this method are:

1) there is no guarantee of convergence,

2) a new secant stiffness must be generated at each step, and

3) a new stiffness matrix must be inverted at each szep.

The preceding two methods, incremental method and iterative method,

are variable stiffness methods with stiffness matrices generated for

each step. In addition to these variable stiffness methods, there are

constant stiffness methods: the initial strain method and the initial

stress method. These have been developed to reduce the computation

time by utilizing the same stiffness throughout.

In the case of the initial strain method [22), use is made in the

first iteration of the elastic stress-strain [De] given by equation (4)

to define [ke ] of equation (19) and solve the equation:

[ke] {q}(1) {Q} , (34)

where fql defines the displacement vector for the first iteration

and [Q) is the total prescribed load vector. This yields an approxi-

mate displacement vector {q}(l). A corresponding approximate strain

is found from:

{ = [B] (q}(1) (35)

Hence the exact stress corresponding to the approximate strain is:

1) (Del p (1() -[ 1(')} (36)

4=.
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where E: is an artificiallv imposed prestrain. An artificial
0

equivalent nodal load corresponding to {c 1(I) is:
0

{Q- (1) = V [B]T [De] I(11 dV (37)
e,n,Z V o

0

The second iteration becomes:

e, (2)
[ke ] {q}(2) = {Q} + {QIe, (38)

e, n,.
E
0

in which the second displacement vector {q} (2) is sought. The

recurrent equation then becomes:

[kel {q}(i)= {q} + {((il) 39)e,n,2.

0

For the initial stress method [22,23,24], equation (36) can

be described as:

D(1) +() (40)a. =[(De] {} +c} ,(0

00
where {ao }0 I )  is an artificially introduced prestress. Corresponding

to {ao } we have

{QI(i) -V [B]T {a } dV (41)il i {q e,nZ -  0

The second iteration involves solution {q(2) as:

Q} e (42)

[ke ] {q}( 2) = {Q} + {Q} ,n,Z (42)

a
0
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The recurrent equation is

'.e, ( i )

[ke] q}(i) - {Q} + {Q} (43)
e,n,Z

0

2.2 BOPACE- 3D

Selection of the proper finite element program that has plastic

analysis capability is an important aspect of solving the elastic/

plastic indentation problem. Here, a finite element code BOPACE (THE

BOEING PLASTIC ANALYSIS CAPABILITY FOR ENGINES) -3D Version 6.2, which

was developed for analysis of the Space-Shuttle Main Engine (SSME),

was chosen.

The program employs the Huber-Mises yield surface criterion, the

Prandtl-Reuss flow rule, and an isotropic-kinematic hardening theory

[7,25,26,27] as the basic concepts of the elastic/plastic theory. It

*also employs three types of stiffness methods [28],

1) the pure "tangent stiffness incremental" method,

2) the "constant-stiffness, initial stress" method, and

3) the "combined" method

for solution of elastic/plastic problems, and a modified Gauss wave-

front solution procedure [22] for linear equation solution.

Development of the program has been strongly influenced by the

following requirements:

1) the analysis of very high temperature, large plastic-

*i creep effects and geometric nonlinearities,

2) treatment of cyclic thermal and mechanical loads,
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3) improved material constitutive theory which closely follows

actual behavior under variable temperature conditions, and

" 4) a stable numerical solution approach which avoids cumulative

* errors.

The above characteristics make it one of the most sophisticated finite

element codes currently available for many types of general nonlinear

problems.

2.3 Verification of Nonlinear Finite Element Code

Before applying the solution technique adopted in this investiga-

tion to the indentation problem, the technique was first verified

by comparing generated elastic/plastic results for two variations of

a selected plane-stress problem with those independently obtained from

the literature. The plane-stress problem selected was a plate with a

circular penetration subjected to uniaxial tension.

2.3.1 Comparison to Yamada's Analysis

Here, the results obtained from the elastic/plastic finite element

code used in this investigation are compared to those obtained by

Yamada [Personal Note] for an aluminum plate with a circular penetration

subjected to uniaxial tension. The comparison is made in terms of

*e forces and displacements along the vertical and horizontal symmetry

axes of the plate for the same nodal coordinates. The Yamada solution

employs an incremental theory upon which many current nonlinear finite

* element codes are based [NASTRAN, NONSAP, etc.]
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* "The stress-strain curve and pertinent material properties for

the aluminum plate material are shown in Figure I for both isotropic

and kinematic hardening. Figures 2 and 3 show the finite element

meshes adopted by Yamada and in this investigation,respectively. Both

meshes employ the same nodal point coordinates for easy comparison of

4 solutions but different element shapes since Yamada's program considers

only triangular elements and the finite element code adopted in this

investigation utilizes quadrilateral elements. This resulted in an

* apparent distortion of quadrilateral elements (Figure 3). Due to

symmetry, only the first quadrant of the plate was discretized. A

uniform tensile stress of 39.2 N/mm2 , which was selected in the

Yamada solution, was applied in the y-direction along the upper edge

of the plate.

Comparisons of the nodal forces and displacements along the

horizontal and vertical axes of symmetry are shown in Figures 4 through

7. Results obtained from the two finite element codes are within 10

percent, with the differences caused primarily by the dissimilarity

of element shapes. Theoretically, the accuracy could be improved for

a given number of nodes by using quadrilateral elements, since the

increased degrees-of-freedom would permit a closer approximation to

the displacements within an element [22,23].

2.3.2 Comparison to Marcal and King's Analysis

In the previous section, a coarse grid model was used to compare

e two different solution techniques. In order to determine the extent

and character of the plastic region as a function of applied tensile
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stress, the model was reconstructed so that nodal density near

the stress concentration would be increased. Through this remesh-

ing, the number of nodes and elements and the maximum wavefronts were

m increased to 399, 350 and 33 from 94, 70 and 15, respectively. This

improved model is shown in Figure 8. The material used for this

investigation was linear strain-hardening aluminum, with the following

mechanical properties; Young's modulus 7000 kg/mm 2 , Poisson's ratio

2 2
0.2, Yield stress 24.3 kg/mm , strain hardening rate 225 kg/mm

These values were obtained from Zienkievicz's [211 and Marcal and King's

[18] finite element analysis of a linear strain-hardening aluminum

perforated strip, whose diameter-width-height ratio was 1:2:3.6

instead of 1:3:5 of this investigation.

The plastic regions for load factors of 1.5, 2.0 and 2.5 are

shown in Figure 9. A load factor of 1.0 represents the load required

to cause incipience of yielding in the plate. Load factors of 1.5,

2.0 and 2.5 resulted in progressive yielding of the plate near the

circular penetration. Figure 10 shows the plastic regions obtained

by Marcal and King. Comparison of Figure 9 and 10 indicates that the

character and extent of the plastic regions are nearly identical

for both analyses in spite of the shape difference of the specimens.

6

iS
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CHAPTER III

SOLUTION TECHNIQUES AND THE INDENTATION MODEL

3.1 Method of Approach

Since an analytical solution to the elastic/plastic problem

is not available at this time, the investigation of elastic/plastic

conical indentation was accomplished entirely by finite element

techniques. The objective was to develop and demonstrate numerical

techniques which can be applied to elastic/plastic problems

involving flow, fracture and residual stress effects beneath a

conical indenter. These techniques will be explained in greater

detail in subsequent chapters.

In the loading procedure, three separate stages were required

to simulate elastic/plastic loading and unloading of a half-space

by a rigid conical indenter. In the first stage, initial loading

was applied through nodal displacements selected to simulate

*conical indentation at the contact-surface. Displacement loading

was used since there is no analytical method currently available

for predicting the load distribution for elastic/plastic conical

indentation. The second stage was designed to obtain the equivalent

surface nodal loads which would result in the same stress and displace-

ment fields as those obtained by the displacement loading of the first

stage. This was accomplished by using the numerical results obtained

0- following the displacement loading of the first stage. In the third

stage, the equivalent surface nodal loads were reduced to zero in order

0



29

to simulate unloading of the specimen. During this stage, the re-

sidual displacement beneath the indenter and the residual stress

fields were generated.

The error norm for each stage in the analysis was limited to

within 5 percent.

3.2 Finite Element Model and Grids

The axisymmetric finite element idealization for the indentation

analysis of the half-space is shown in Figures 11 through 14. Figure

11 shows the overall outline of the model and Figures 12, 13, and 14

are sub-grids which must be inserted into the appropriate central

sectors of Figures 11, 12, and 13, respectively, to construct the

entire model. There are 470 nodes and 427 elements, and the maximum

wavefront that governs CPU-time (22] is 15. Loading is applied in

the vertical direction along the y-axis, as shown in the figures. The

finite element mesh was designed to meet the following objectives:

1) to reduce the maximum wavefront in order to minimize

CPU-time and core storage requirements,

2) to reduce the occurrence of singularities for elements

in regions of primary interest by considering the shapes

of elements,

3) to reduce the number of elements in regions that are of

less interest by using curved boundary elements which

include intermediate nodes at the edge of the elements,

4) to limit the maximum output to 30,000 printed lines, which

is the maximum number of printed lines for JOB-category 5

D" .
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* Figure 11. Axisynunetric Finite Element Model for
Indentation Analysis.
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Figure 12. Axisynmetric Finite Element Sub-Gr .. s
for Indentation Analysis (Insert A of
Figure 11).



-. 32

051.0 1-5 0

t X(MM)

0-6

* Figure 13. Ajzisymetric Finite Element Sub-Grids
for Indentation Analysis (Insert B of
Figure 12).



33

IN ENE

4-

Figure 14. Axisyinmetric Finite Element Sub-Grids
for Indentation Analysis (Insert C of

a Figure 13).



* 34

r of PSU-IBM 370, by controlling the total number of

elements,

5) to generate or preprocess the input data easily.

* 3.3 Material Used in this Investigation

*. The material selected for this analysis was idealized soda-

lime glass. Soda-lime glass is a brittle material used in many

" . fracture mechanics experiments and its behavior is well established

for Vickers pyramidal indentation and spherical indentation. It is

known that soda-lime glass exhibits elastic/perfectly plastic behavior

when subjected to indentation loading. It was thus an appropriate

material for the nonlinear finite elem nt model. The stress-strain

curve for this elastic/perfectly plastic soda-lime glass is shown

in Figure 15 together with its pertinent material properties.

°"--------kLA
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CHAPTER IV

ELASTIC AND ELASTIC/PLASTIC CONICAL INDENTATION

4.1 Introduction

The finite element model for conical indentation of a half-

space was formulated so that it could be applied to both elastic and

elastic/plastic indentations. This required the method of loading to

be carefully considered. For the case of elastic indentation, the

pressure distribution, resultant forces and displacements directly

beneath the indenter can be obtained from a closed-form solution by

Sneddon, as shown in Appendix A. Each of these parameters can be

used as load input to the finite element program at appropriate

nodes beneath the indenter to model elastic conical indentation.

As the material begins to yield, the pressure distribution, and

resultant forces beneath the indenter are completely unknown, while

the displacement field is partially specified. In the case of the

displacement field, nodal points on the contact surface must conform

to the profile of the indenter. For regions adjacent to the contact

*i surface, the displacement of surface nodes would be automatically

generated as output of the finite element code.

In order to generate a model which can apply to both elastic

and elastic/plastic conical indentations, it was decided to input

load through the displacements of surface nodes along the contact

surface. This would allow direct comparison of the finite element

results with those obtained from the closed-form solution for

a~
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elastic indentation, and also afford partial specification of the

displacement field beneath the indenter for elastic/plastic indenta-

tion.

4.2 Method of Analysis

The coordinate system adopted in the analysis, the geometrical

characteristics associated with the indenter geometry, and the dis-

placement loading are shown in Figure 16. In order to simulate

Vickers indentation, the included angle of the indenter was set to

a =136 degrees.

An elastic finite element analysis was performed initially to

* -. "verify the finite element model. Here, the contact surface radius

was selected as b = 0.30 mm, resulting in a depth of indentation

v = (d+e) = 0.19 mm that was computed from the Sneddon solution.,-..'max

The Sneddon solution also allowed specification of both vertical and

horizontal displacements of surface nodes within and adjacent to

the contact surface. In the finite element analysis, however, only

the vertical displacement of the nodes on the contact surface was

specified. Horizontal displacement was computed as output in order

to allow a greater degree of freedom on and adjacent to the contact

surface.

Following the elastic finite element analysis, the elastic/plastic

finite element analysis w.. conducted. As described earlier, the dis-

placement field beneath the indenter is only partially described in

this case. A trial elastic/plastic run was made, in which the

initial vertical displacements of nodes within the contact surface
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Figure 16. Conical Indentation Geometry Beneath
the Indenter.
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-were obtained from the Sneddon solution for assumed elastic/perfectly

plastic behavior of soda-lime glass. Following this step, nodal

force resultants were checked for the nodes adjacent to the contact

surface to determine whether any vertical tensile tractions existed.

This condition, when encountered, indicated a divergence of elastic/

plastic surface deformations from the elastic Sneddon displacements,

resulting in "overlap" of vertical surface displacements with the

indenter profile. This was alleviated through trial reductions of

the indentation depth that were repeated until the vertical tensile

tractions were reduced to zero or assumed small compressive values.

For soda-lime glass, it was found that closed-form computation of

vertical displacements on the contact surface resulted in no

tensile tractions for the selected contact surface radius and there-

fore applied for elastic/plastic indentation.

4.3 Results and Discussions

The elastic and elastic/plastic results expressed in terms of

surface stresses and stresses directly beneath the conical indenter

0@ are shown in Figures 17 to 20. In these figures, elastic results

obtained from the closed-form Sneddon solution and the elastic

finite element analysis are compared to those obtained in the

elastic/plastic finite element analysis. In each case stresses

are non-dimensionalized with respect to the factor Etana = (eE/b),

while distances along the free surface of the half-space and beneath

the indenter are nondimensionalized with respect to the contact sur-

face radius, b.

0j
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4.3.1 Elastic Conical Indentation

Considering initially the elastic conical indentation, it is

-obvious that excellent agreement is obtained between elastic stresses

generated by the closed-form Sneddon solution and the elastic finite

*element analysis both on the surface of the half-space and directly

beneath the conical indenter. Minor differences are found at the

edge of contact (x/b = 1.00). These differences are caused by the

inability of the finite element grid to actually express the high

stress gradient in this region. Alon' the surface at the edge of

contact, both the Sneddon solution and the elastic finite element

analysis show a tensile peak in what will be cermed the horizontal

stress component, a n, Figure 17. This peak, also found in spherical

indentation, is usually associated with ring cracking and subsequent

Hertzian cone cracking. This will be discussed further in a sub-

sequent section. Within the contact zone, this stress becomes

compressive, reaching a compressive maximum directly beneath the

indenter. Outside the contact area, this stress decreases from the

tensile peak to zero as distance increases from the contact surface.

The out-of-plane hoop stress, a , along the surface is everywhere". '.ZZ'

compressive, with the peak compressive value being found directly

* beneath the indenter, Figure 18. This stress also gradually decreases

to zero as distance from the origin increases.

Directly beneath the indenter, the horizontal stress, axx ,

W Figure 19, changes from high compressive values at the surface to

small tensile values at approximately one contact radius from the
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surface. The highest tensile value is found at the point of y/b 1.60.

Beyond this point, this stress gradually decreases to zero. Tensile

values of this stress result in median cracking, found beneath

pyramidal and conical indenters. The subject of median cracking will

be discussed in a subsequent section. The out-of-plane hoop stress,

a , is of course equal to the horizontal stress, a., along this axis
ZZ

of symmetry. The subsurface vertical stress component, a yy, shown in

Figure 20, is everywhere compressive; reaching a peak magnitude directly

beneath the indenter and rapidly decreasing to zero at increased

distance from the origin.

Figure 21 shows the pressure distribution, ayy, within and ad-

jacent to the contact zone. Within the contact zone (x/b < 1.00) the

classical pressure distribution expected beneath a conical indenter is

obtained from the elastic finite element analysis for the prescribed

displacement loading. As can be seen from the figure, this corresponds

very well to that obtained from the closed-form Sneddon solution for

elastic conical indentation. This verifies the displacement loading

condition assumed in this investigation, where only vertical dis-

placements of surface nodal points are specified. In addition, the

load resultant predicted from the Sneddon solution (Appendix A),

F = 3004N, compares well with that determined independently by

4 summation of the vertical nodal forces on the contact surface of

0 < x/b < 1.00, F= 2943N. This factor further substantiates the

displacement method of load application.
4- .

1
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4.3.2 Elastic/Plastic Conical Indentation

In generating elastic/plastic stress states beneath the conical

indenter, the model was allowed to yield according to the Huber-

Mises yield criterion at nodal points beneath the indenter with sub-

sequent flow being governed by the Prandtl-Reuss flow rule. The

elastic/perfectly plastic stress-strain curve was assumed for soda-

lime glass. During each iteration loop, both the elastic and elastic/

plastic portions of the stiffness matrix were updated. As stated

earlier, the vertical nodal point displacement along the contact sur-

face was used as load input for an assumed contact radius of 0.30 mm.

The elastic Sneddon solution was used to predict vertical displacements,

thus raising an obvious question regarding the use of an elastic

solution for the prediction of elastic/plastic displacements beneath

the conical indenter.

The applicability of the elastic Sneddon solution for the pre-

diction of vertical displacements on the contact surface was judged

by observation of mesh deformation for the elastic/plastic case, and

the extent and character of the plastic region. The mesh deformation

for the elastic/plastic conical indentation is shown in Figure 22.

The corresponding extent and character of the plastically deformed

* region and the stress trajectories beneath the indenter can be seen in

Figure 23. These figures indicate a continuity of surface deformation

. both within and adjacent to the contact surface, and also plastic

* -region characteristics similar to those measured experimentally and

predicted analytically. The shape of the plastic zone obtained by

a ,- a~an, ~ m mnmuma~ =n Ul~ me
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the elastic/plastic finite element analysis is nearly hemispheiical

and is centered directly beneath the indenter. Its radius c is

approximately 0.35 mm, resulting in a ratio of c/b equal to 1.16.

This c/b ratio compares favorably with a value of 1.159 explicitly

obtained by Johnson [11] (APPENDIX B) as a function of material

properties, with the center of the plastic region at the undeformed

origin. These factors were therefore considered as substantiation

of the assumed displacement loading as obtained from the Sneddon

solution. Observation of Figure 23 illustrates the difference in the

principal stress trajectories of the elastic and plastic regions. In

the elastic region, the in-plane hoop stress is the maximum principal

stress, a1, whereas in the plastic region, the out-of-plane hoop stress

is mainly the maximum principal stress, aI.

In figures 17 to 20, the elastic/plastic stress fields along

the surface of the half-space are compared with the elastic solutions

obtained from the finite element analysis and the Sneddon solution.

The horizontal stress, axx, along the surface shows the characteristic

tensile peak at the elastic/plastic boundary as indicated in Figure 17.

Within the contact zone, this stress is again compressive, reaching a

compressive peak directly beneath the indenter. Outside the region

of contact, this stress rapidly approaches the value obtained in the

elastic analysis at the elastic/plastic boundary. This tensile

peak is usually associated with ring cracking, as suggested in the

previous section. The out-of-plane hoop stress, azz, along the sur-

face again is everywhere compressive, with the peak compression being

found directly beneath the indenter, as indicated in Figure 18.
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This stress does not rapidly approach elastic results with increasing

distance from the contact region as was seen in the case of the hori-

zontal stress, ax.xx

Directly beneath the indenter, the horizontal stress, axx, changes

from high compressive values near the surface to small tensile values

at the elastic/plastic boundary, as indicated in Figure 19. This

stress rapidly approaches levels obtained in the elastic analysis

near the elastic/plastic boundary. Tensile values of this stress

result in median cracking as suggested in the previous section. The

subsurface vertical stress component, a , is again everywhere com-

pressive; reaching a peak magnitude directly beneath the indenter.

It decreases to zero with increasing distance from the surface more

rapidly than the corresponding stress in the elastic analysis. This

is indicated in Figure 20.

In Figure 21, the elastic/plastic pressure distribution, yy'

within and adjacent to the contact zone i- compared with the elastic

solutions obtained from the finite element analysis and Sneddon

solution. It is obvious that high pressure exists within the

region of contact and that this pressure is, of course, suddenly

reduced beyond the contact surface. The elastic/plastic load

resultant generated from summation of the vertical nodal forces on
generatedT on

the contact surface of 0 < x < b is obtained as F= 2498N. This
f

. is 15 to 17 percent lower than the elastic load resultants obtained

from the Sneddon solution and the elastic finite element analysis.

This lower load resultant value was expected, since less pressure

was needed to deform the yielded region.
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CHAPTER V

" RESIDUAL SOLUTIONS FOR ELASTIC/PLASTIC CONICAL INDENTATION

5.1 Introduction

* "In this chapter, residual stress, displacement and strain fields

resulting from the elastic/plastic conical indentation are generated.

Development of the residual solution required that a load-unload cycle

consisting of two separate loading stages (stage II and III) be formu-

lated. During the loading stage of the cycle (stage II), equivalent

nodal forces were applied as load input to surface nodes within the

contact area. These equivalent nodal loads were obtained from the nodal

force output obtained in stage I displacement loading and produce the

* surface deformation and resultant stress, displacement and strain

distribution beneath the indenter. A procedure developed to convert the

nodal force output obtained in stage I to the equivalent nodal load is

discussed in greater detail in the following sections of this chapter.

In the unloading stage of the cycle (stage III), the equivalent nodal

loads were reduced to zero, resulting in the required residual solutions.

5.2 Method of Analysis

The procedure used to obtain the equivaleit nodal loads in the

contact area from the nodal force output obtained in stage I is dis-

cussed in this section. These equivalent nodi! loads are, as mentioned

previously, used during the loading stage of the cycle (stage II).

F
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In order to improve stress and displacement fields beneath the

indenter for stage II loading, an iterative scheme was developed through

which the output nodal forces from stage I loading were continually im-

proved by incrementing each nodal load magnitude until the error in re-

, sultant displacement and stress fields and nodal force resultants be-

neath the indenter was less than 3 percent. With the error reduced to

less than 3 percent, the nodal force loading was considered to be

equivalent to the nodal displacement loading. Figure 24 compares the

nodal forces resulting from the displacement loading to the equivalent

nodal loads obtained through the iterative scheme.

Following tie equivalent nodal force loading in the loading phase

of the cycle, the equivalent nodal loads were reduced to zero yielding

residual displacements, strains and stresses on the contact surface

and beneath the indentation.

5.3 Results and Discussion

A geometric comparison of the indentation profile obtained in

the loading phase of the cycle and the residual surface crater remaining

6- after unloading is shown in Figure 25. From Figure 25, the ratio of

R
residual crater depth to maximum indentation depth, Vmax /V max' is

easily obtained as 0.41. This ratio can be compared to that analytically
:I

predicted from the equation developed by Lawu and Howes [46] (APPENDLX

R
B, equation (B-8)). The analytical ratio obtained is v /v = 0.70

for a hardness of soda-lime glass of 5.6 GPa and the assumption

"(E =H9 where E and H are elastic and plastic hysteresis geometrical

parameters, respectively (APPENDIX B, equation (B-9)). The disagreement

i° •
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between the finite element and analytical results may be caused by the
' R

"assumption E H" By using the value of /V = 0.41 predicted
""f 

max max

by the finite element solution and equation (B-8), a geometrical para-

meter ratio yE/YH of 1.26 is obtained resulting in a geometrical para-

meter for plastic hysteresis yH of 1.25. This result is based on an

assumed elastic geometrical parameter y = 7/2 defined by Sneddon [5,6].

It should be noted that there is a pile-up on the free surface

adjacent to the contact radius, as shown in Figure 25, and this pile-up

is the result of elastic recovery of the surface elements adjacent to

the contact area, Figure 26.

Non-dimensionalized horizontal and out-of-plane hoop residual

stresses along the indentation surface are shown in Figure 27.

Stresses are shown as a function of non-dimensionalized distance from

the center of indentation. Both the horizontal and out-of-plane hoop
•R R

stresses, a2  and a , are tensile for the regions 0.5 < x/b < 1.5

and x/b> 0.6, respectively, with tensile peaks occurring at the

elastic/plastic boundary x/b = 1.3. These tensile residual stresses

may be responsible for the propagation of radial cracking during the

unloading phase of the cycle, a topic of discussion in a subsequent

chapter.

Non-dimensionalized residual stresses directly beneath the indenter

are shown in Figure 28. The horizontal and out-of-plane hoop stress,

R R R
ai xand czz, as well as the vertical stress component, ayy are

tensile for y/b > 1.5. Tensile values of the out-of-plane hoop residual

stress could result in median crack extension during the unloading

phase. The vertical residual tensile stresses could promote lateral
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crack propagation upon unloading. Both of these possibilities

will be explored in the following chapter.

The residual plastic zone and stress trajectories are shown in

Figure 29. Comparison with Figure 23 reveals that the size of the

plastic zone has increased approximately 20 percent during the un-

loading phase due to elastic recovery in the plastic region. Of

major interest are the stress trajectories in the elastic region

where fracture can be extended during the unloading phase. In

this region the stress trajectories indicate the possible propagation

of the lateral cracking driven by the in-plane hoop stress, a R

from points near the elastic/plastic boundary. Near the surface,

the trajectories indicate that the out-of-plane hoop residual

R R
stress, a = al' would result in the radial crack extension. Forzz

subsurface regions, the trajectories indicate the possibility of

the median crack propagation by the out-of-plane hoop residual stress,

R
;-." ZZP.a

* .- zz

a.'

0.'
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CHAPTER VI

ANALYSIS OF FRACTURE MECHANISMS INDUCED BY INDENTATION

6.1 Introduction

Analytical and experimental investigations considering the

mechanics of crack initiation and propagation beneath spherical,

conical, Vickers pyramidal, and point indentations in a variety of

materials have been the topic of many recent investigations [29-48].

In this chapter, fracture mechanisms beneath conical indentation in

soda-lime glass are further described by applying the numerical results

obtained in the preceding chapters to approximate fracture mechanics

theories. Conical indentation was chosen for analysis as it closely

simulates loading conditions found in a large variety of machining

processes.

6.2 Failure Modes beneath the Indenter

There are four major crack systers introduced as indentation

fracture mechanisms. These crack systems can be classified by the

cracks initiated and propagated near the surface and at subsurface

locations. It has also been experimentally and analytically shown that

these crack systems are initiated on or near the elastic/plastic boundary

with subsequent extension into the elastic region. The schematic

diagram of these crack systems is shoun in Figure 30.

0 o
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6.2.1 Crack Systems near the Surface

Near the surface, two major crack systems are usually found in

axisymmetric indentation. They are surface ring crack system which is

minitiated in the loading phase of the cycle [35,361, and radial crack

system which is usually initiated and propagated during the unloading

phase of the cycle [33,35,36]. It is known that surface ring crack

system is often propagated as a Hertzian cone crack [31,35,37,40] in

the case of spherical indentation. In the case of Vickers pyramidal

indentation, radial crack system is often initiated in the loading phase

and propagated during the unloading phase of the cycle, since the edges

of pyramidal indenter create highly singular regions in the specimen

[33,36,41,42].

6.2.2 Subsurface Crack System

Two major subsurface crack systems are also found. They are me-

dian crack system, which is initiated and propagated during the load-

ing phase and further propagated during the unloading phase of the

cycle [33,35,36,38], and lateral crack system, which is usually ini-

tiated and propagated during the unloading phase of the cycle. It

is known that the shape of the median cracking is penny-like or half-

penny-like [33,34,36,38,39,43] beneath the indentation. Lateral crack

system is often initiated with the surface ring crack and propagated

as a Hertzian cone crack in the case of spherical indentation [31,35,

37,40] as described in the last section. In the case of Vickers pyra-

midal indentation, lateral crack system is initiated on the elastic/

plastic boundary and propagated to the surface [33,35,37,38.41].

.4
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6.3 Fracture Initiation and Propagation

In the discussion of fracture initiation and propagation during

elastic/plastic conical indentation, only the opening mode (K -mode)

was considered. To correlate the stresses numerically obtained by

. the finite element method with opening mode fracture, the tensile

peak stresses at the surface and at subsurface locations must be

considered, especially near the elastic/plastic boundary.

6.3.1 Identification of the Tensile Peak Stresses

The necessary tensile stress fields and tensile stress trajectories

for loading and unloading of a conical indenter were numerically

determined in the preceding chapters. By observation of Figures 17

and 27, the maximum surface tensile stresses are found at the elastic!

plastic boundary. In the loading phase, the maximum value of the

horizontal surface stress, a xx corresponding to surface ring

cracking, is obtained as 2.2 GPa. During the unloading phase, the

Rmaximum values of the horizontal surface residual stress, a

corresponding to the surface ring cracking, and the surface out-of-

plane residual hoop stress, a corresponding to radial cracking,

are obtained as 1.6 GPa and 1.8 GPa, respectively. By observation of

Figures 19 and 28, the maximum subsurface tensile stresses along

the y-axis are also found at the elastic/plastic boundary. In the

loading phase, the maximum value of the subsurface horizontal stress,

xx , which is equal to the subsurface out-of-plane hoop stress, qzzI

a corresponding zo the median cracking, is obcained as 0.48 GPa. During

the unloading phase of the cycle, the maximum values of the subsurface

6-
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horizontal residual stress, a = a R correspouding to the median
c ZZ9

" cracking, and the subsurface vertical residual stress, a R corres-
yy

-- ponding to the laterial cracking, are obtained as 0.42 GPa and 0.24 GPa,

respectively. Those tensile peak stresses are shown in Table 1 with

the corresponding crack systems which they initiate.

6.3.2 Critical Flaw Size

*The peak tensile stresses obtained in the previous section can

be combined with an appropriate fracture mechanics theory to predict

fracture initiation and propagation beneath the indenter. Crack

initiation is here predicted by the Griffith flaw hypothesis [29,301:

a >(2Er/rcf) (6.1)

where a is the critical stress causing stable fracture, E is Young's

modulus, r is the crack surface energy and cf is the flaw size. By

solving equation (6.1) for cf9 the following expression is obtained

for the critical flaw size corresponding to the tensile peak stress:

2
cf > (2Er/Try). (6.2)

On the surface, the critical flaw sizes corresponding to the

horizontal tensile peak stress, 2.2 GPa, and the horizontal residual

*O peak stress, 1.6 GPa, are obtained from equation (6.2) as 0.025 um

and 0.048 um, respectively. These critical flaw sizes will result in

initiation and propagation of the surface ring cracking. Also on the

surface, the critical flaw size corresponding to the out-of-plane hoop

residual tensile peak stress, 1.8 GPa, can be calculated as 0.039 um

which will result in initiation and propagation of the median cracking.
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At subsurface locations along the y-axis, the critical flaw sizes

, . corresponding to the horizontal or out-of-plane hoop tensile peak stress,

* 0.48 GPa, and the horizontal or out-of-plane hoop residual tensile peak

stress, 0.42 GPa, are obtained from equation (6.2) as 0.54 wm and 0.7 im,

respectively. These critical flaw sizes will result in initiation and

propagation of median crack system. Also at subsurface locations along

the y-axis, the critical flaw size corresponding to the vertical residual

tensile peak stress, 0.24 GPa, can be obtained as 2.17 pm, which will

result in initiation and propagation of lateral crack system.

The c'itical flaw sizes have been discussed in recent papers.

Lawn and Evans [36] have given the critical condition for the initiation

of subsurface flaws as:

cf = 44.2 (KIC/H) . (6.3)

Hagan [43,441 has developed a similar expression for the largest flaw

size which could be nucleated by the intersecting flow lines beneath

the indenter:

cf 2.95 (K Ic/H)2 (6.4)

In these equations, KC and H are the critical stress intensity factor

and hardness, respectively. For values of KIC = 0.7 11m -3 /2 and

H = 5.6 GPa for soda-lime glass, equations (6.3) and (6.4) predicted
a

critical flaw sizes of 0.7 Pm and 0.46 um, respectively. The void size

for soda-lime glass has been experimentally measured by Hagan [441

as 0.6 jim. These flaw sizes were correlated to the median cracking.
SSwain and Hagan [35] and Chiang, Marshall and Evans [47] correlated

4'
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the crack systems and the threshold flaw sizes, The threshold flaw

sizes for median and radial crack systems were estimated as 1.0 m

and that for lateral crack system was estimated as 3.0 urm. All of those

U critical flaw sizes are compared in Table 2. The critical flaw size

obtained by the finite element analysis with the Griffith energy

hypothesis agrees very well with experimental and analytical values

for median crack system. However the critical flaw sizes obtained by

Swain et al. and Chiang et al. are clearly overestimated as compared

with other analytical, experimental and numerical values for crack

initiation.

6.3.3 Fracture Initiation and Propagation Zones

As described previously, the critical flaw sizes required for

the initiation and propagation of the various crack systems are

obtained from the Griffith energy hypothesis with the stresses generated

by the finite element method. It was, then, found that the critical

flaw sizes predicted by Swain et al. and Chian et al. were overesti-

mated when compared with the critical flaw sizes obtained in this

investigation.

However, by use of these overestimated flaw sizes, the critical

stresses can be generated by equation (6.1) to predict probable

crack initiation and propagation zones. The values of the critical

stress corresponding to initiation and propagation of the median and

radial crack systems is obtained as 0.35 GPa from equation (6.1) with

the value of cf = 1.0 im. Also the value of the critical stress

corresponding to lateral crack system can be obtained as 0.2 GPa from"I
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equation (6.1) with the value of cf = 3.0 Pm. These two critical

- stress values can be compared with the stresses generated by the

finite element analysis. In Figure 31, the assumed crack initiation

and propagation zones corresponding to a > 0.35 GPa in the loading

phase are plotted. Those can be thought of as the assumed surface

'.ring crack zone and the assumed median crack zone. In Figure 32,

the assumed crack initiation and propagation zones corresponding

to o >0.35 GPa and a1 > 0.2 GPa during the unloading phase of the cycle

. are plotted. Those can be thought of as the potential median crack,

radial crack and lateral crack zones.

hi

r

a-2

a"

.....,,
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The following conclusions were reached in this investigation:

1. The elastic/plastic finite element code used in this investi-

gation was verified by comparing nodal displacements, forces

and plastic zone extension obtained for selected plane-

stress problems, the plates with a circular penetration, with

results numerically obtained by Yamada [Personal Note] and

Marcal and King (18] in independent investigations.

2. The solution technique was further verified by comparison

of elastic displacements, strains and stresses generated

for conical indentation of an elastic half-space to the

closed-form results obtained from the Sneddon solution.

3. The elastic/perfectly plastic finite element model developed

for conical indentation of a half-space was successfully

utilized to determine the size and characteristics of the

plastic zone beneath the indenter during a loading-unloading

cycle. The size of the plastic zone was shown to agree

well with results obtained analytically by Johnson [11].

The shape of the plastic zone was shown to be hemispherical

which conformed to results obtained in previous experimental
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and analytical investigations. The origin of the hemis-

pherical plastic zone was found to be on the deformed

surface directly beneath the indenter, not on the undeformed

surface.

4. The displacement, strain and stress fields were successfully

generated by the elastic/plastic finite element model for a

loading-unloading cycle. Resulting loading and residual

stress fields were examined to determine the location and

magnitude of tensile peak stresses which would result in

the initiation and subsequent propagation of the ring, radial,

median and lateral crack systems. Tensile peak stresses

were characteristically found on the elastic/plastic boundary

near the surface and at subsurface locations directly

beneath the indentation. The out-ofLplane hoop stress, which

controlled both radial and median cracking, was found to

change sign near the surface from compression during the

loading phase to tension during the unloading phase of the

cycle. This indicates that radial crack propagation

and the additional median crack propagation takes place

during the unloading phase, a fact experimentally verified.

5. By use of the Griffith energy hypothesis with the generated

tensile peak stresses, the critical flaw sizes, resulting in

initiation of the crack systems, were obtained. The critical

flaw sizes obtained in this investigation agreed well with
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critical flaw sizes predicted analytically and experimentally

by Lawn et al. [361, Hagan [43,44], Swain et al. [351 and

Chiang et al. [47] for each crack system.

6. Fracture initiation and propagation zones for the loading

phase and unloading phase of the cycle were generated through

comparison of the tensile peak stresses obtained in this

investigation to critical stresses obtained from the Griffith

energy hypothesis and maximum allowable flaw sizes. These

fracture initiation and propagation zones agreed well with

actual initiation and propagation zones experimentally

observed.

7.2 Recomendations

The following subjects are recommended as topics for further

research:

1. The elastic/plastic finite element model should be expanded

to consider elastic/plastic strain hardening in order to

analyze more realistic indentation models.

2. Investigation should be expanded to consider more brittle,

lower yield strength/Young's modulus ratio models such as

MgO and ZnS in order to determine the effect of these para-

meters on the extent and character of the plastic zone and

resultant crack systems.

3. Shear peaks as well as tensile peaks should be investigated

as they affect fracture initiation through dislocation

activity and crack propagation by Mode II loading.

44 : -' hnau ' d - , " -- - m" ""
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4. The elastic/plastic finite element model should be expanded

to consider non-axisymmetric indentation such as Vickers

pyramidal indentation and obtain characteristics of the

singularities created by the edges of the indenter.

5. The elastic/plastic finite element technique should be

combined with statistical analysis, such -s "The Monte

Carlo method' in order to closely model elastic/plastic

indentation fracture.

aL'

-a

6. .



* 78

APPENDIX A

THE ELASTIC STREAS FIELDS FOR POINT, SPHERICAL AND CONICAL INDENTATION

1. Point Indentation (Boussinesque and Michell Solution)

The well known non-dimensionalized stress field equations for

the point indentation problem 1121 are given for the coordinate

system shown in Figure 33 as:

a
r~~~~o - se.. ics +11

p 4(X+i)

C2 206 (A-1)-4-(cosO-sin e) sec
p 4Ck-s-i'

Tr sine cose sec 0

where

=E

(l+v)(1-2v)

E
= 2 (1-4v)

' 
F

F applied load
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La

Figure 33. Point Indentation Geometry.
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2. Spherical Indentation (Hertz and Huber Solution)

The non-dimensionalized Hertzian stress field which was extended

to a general three-ditiensional form by Huber [4] is expressed by four

sets of equations depending on the coordinates of the point in the

half-space, Figure 34.

For points along the y-axis directly beneath the indenter

(R=0(xffO, z=0)):

..a . -1.5{1+v)[1 - arctan 2

pPO a y 2 a2+y
R=O R=0

2
a-1.5 aP1. 2 2y'2(A-2)

0R=0 O

yzYf= = tzxI =0.";: XYR=O yRfi zxR=0

For points on the surface of the half-space beneath the contact sur-

face of the indenter (y=0, R < a):

Cx _ 1-2v a 1 2 15 2 2
p 2 2 a a1: o~~ y-/a 22  /2R )  ._]a /2R

i ay =-1.5 Va2-R2
Po a
P y=O

z I  = a 1 2 2 1.5 /a2_)

O 2 Ry=0 2 -(a /a-R) a

T TYZI y zxl = 0.
S! z=O y

4i
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Figure 34. Spherical Indentation Geometry

beneath the Indenter.
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R. and

8Ea• F =

3D(l-v 2)

f = 2a-2 2h.
D

3. Conical Indentation (Sneddon Solution)

The coordinate system for Sneddon's analysis is given in Figure

35. Before defining expressions for the stress distributions in

the half-space, the displacement functions, mean pressure and pressure

distribution at the surface of the half-space will be defined. The

vertical displacement at the surface of the half-space is assumed as:

. [V~o) ]  d + e(1-Q)

where p - x/b , (A-6)

d - e(kTr-),

while the horizontal displacement on the surface is given by:

1-2v I -

4 (i-v) 2[uo ] =1+ ,/1-P 2  P

:.1-2,u
'-" ( i - ) 0( P >  i) .( A -7 )

The resultant force F, the mean pressure pm and the pressure distribu-

tion P(P) on the surface are expressed as:

1 b

• I " - . . ' " - " ' . . .i : " .* i
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0

Figure 35. Conical Indentation Geometry
beneath the Indenter.
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F- i"rbeE Erb2
F = tanS"-" 12 i- 2

2(1-v ) 2(-\ )

F EtanB
Pm 2 2 ' (A-8)

7rb2  2(1-v 2)

P(p) = Pm arcosh )
p

The non-dimensionalized stresses within the half space are given by:

ax 0(K 0 -2\..K.... 1 K 0

P -(K 1  P P 1 K2 )

a0 0
0K ,(K + ; K 2  '

az 0 1-2bt w- x - K- K) (A-9)

aMI 0 a

-.-

m'"

ut whereaa o a oz 0 aq Yo(7.

1 2 ~ 2... I  - " t2 2 2

+ .-

U.
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0 1 cos b
K = 

--2 Q2  ~

K1.- I V2 + 2 Q Cos
1 it 2__2_

K"--co[( /  p-+ )- Coso €1
2Vp 2 + ~2

1 0 1 1
K 0 [pKl -KI - (l-Q sin)],

and

S= e =b tana,
b

2 2 4 2 2 2

11__
*=arctan *= arctan 2

4. Comparison of the three elastic indentation stress fields.

To compare the three elastic stress fields" which are given in the

preceding sections of APPENDIX A for the same condition, Young's

modulus E, Poisson's ratio v, and the resultant force F must be fixed.

For the finite element analysis of conical indentation, the following

four values were defined:

E = 49000 N/mm2  v = 0.22

Contact radius b = 0.3 mm cone angle a 1360 (a = 220)

From these four values the resultant force F can be obtained from

equation (A-8):

I -° .- ..
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1° -b

F = 2 tanB = 2941. (N)
2 (1-v)

If we equate the contact radius a for Huber's with b for Sneddon's

then the spherical diameter of Huber solution can be defined as:

;:' 8Ea

D =14.00 ( )
2

3F(l-v2)

Huber's stress fields and Sneddon's stress fields were non-dimensionalied

by the factor ra 2/F = rb 2/F; however, Michell's stress field was non-

dimensionalized by the factor 7rr 2/F (r is variable). To compare Michell's

stress field with other two stress fields results for the Michell solu-

2 2 2:-" tion (A-l) are multiplied by p' f F/irr and divided by pp=Pm=fiF/Ta =F/rb

The comparison of the three elastic non-dimensionalized stress fields in

terms of the angle e are plotted in Figures 36 through 39 for the

coordinates:

x 2 + y 2 a2  r2  and z =0,

where x - rsin6 y =rcosO

To see the effect of the cone angle a in Sneddon solution, the

cone angle a and the contact radius b are assumed as variables while

E, v, F, a and D are remained as constants. The relationship between

a,$, b are shown in Table 3. With the constant non-dimensionalized

factor i/po, the change of Sneddon's stress field in terms of the angle e

are plotted in Figures 40 through 43 under the condition:

4
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Table 3. Relationship between a, B, and b

a0 b () b/a

160 10 0.4541 1.514

136 22 0.3 1.0

120 30 0.2510 0.8365

80 50 0.1747 0.5823

40 70 0.1150 0.3835
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2 2 2
x + y a O0.09

By comparing these figures with Figures 36 to 39, it is obvious

P that Sneddon's stress field behaves like Hertzian stress field under

the same contact radius and also Sneddon's stress field behaves like
- - 4

Michell's stress field under the sharp included angle and small

contact radius as be expected.

........................... . . . . .
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APPENDIX B

THE ANALYTICAL-EXPERINENTAL EQUATIONS FOR ELASTIC/PLASTIC INDENTATION

Various formulas to define the indentation hardness, H, in terms

of Young's modulus, E, Poisson's ratio, v, and yield strength, Y,

have been developed by Johnson [11], Perrott [37,39], and Izumitani [121.

These formulas were derived by utilizing Hill's elastic-plastic

solution of the expansion of a spherical or cylindrical cavity [7,8]

along with experimental observations.

Johnson's formula for a conical indentation is:

H 25 + 2 in c) ,(B-l)

with

E 3
tana - 6(l-v)(--) - 4(1-2v) , (B-2)

Y

and for a wedge indentation is:

.°"-" H 2 1 c (3H F3 [t + in (B-3)

with

4E 2
f'y tanB - (5-4v) ) - 3(1-2v) (B-4)

where c is the radius of the plastic zone and the center is the

*undeformed origin.

Perrott's formula for conical and pyramidal indentation is:

"- H [Etan
" = 0.494 + 0.577 Zn y(l 2 1 (B-5)

" "
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Izumitani's formula for knoop indentation is:

H 2
.. . " = " + 2 n )c 

B- 6

with(-)

3 . E(3 E

b - 3(l-v)Y
= 

(B-7)

which are the same as Hill's equations for the expansion of a spherical

cavity in an infinite medium.

The relationship between indentation depth vmax and residual crater

-'aR
depth v in terms of material properties and geometrical properties

for the conical indentation problem is expressed by Lawn and Howes

[461 as:( R Y2 2
max I (l-V 2 )  ) co H (B-8)V m a x F H 

('-E

where H is the indentation hardness, and JE is the elastic

geometrical parameter which is expressed as:

.YE btans 2 7 for Sneddons solution) (B-9)

and JH is actually an unknown geometrical parameter of plastic

hysteresis; however, it is usually defined as Y' YE

F .

a-.
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